
 J. Vásárhelyi et al. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 143-148 143
__

ISSN 1844 – 9689

Concept Lattice algorithm implementation

J. Vásárhelyi*, L. Kovács**
* University of Miskolc, Department of Automation and Communication Technology, Miskolc, Hungary

** University of Miskolc, Department of, Miskolc, Hungary
vajo@mazsola.iit.uni-miskolc.hu, kovacs@iit.uni-miskolc.hu

Abstract—The increasing interest on application of concept
lattices in the different information systems results in
several implementations and algorithm proposals and
representation tools. The concept lattice is mainly for
representation of the concept generalization structure but it
can apply as a classification tool too. A key component of
practical applications is the efficient implementation of
lattice building. This paper analyses the possibility of
algorithm parallelization and implementation in hardware,
which allow the speed up of the lattice construction and
search for generated concepts.

Keywords: concept lattice, lattice building, FPGA, parallel
algorithms

I. INTRODUCTION
Concept lattices are applied in many application areas

in industry to perform knowledge management tasks. The
lattice structure represents conceptual hierarchy among
the objects in the underlying problem domain. The field
of Formal Concept Analysis [1] was born in the 80ies and
it is now a powerful method in data analysis, information
retrieval and knowledge discovery. In the literature, we
can find several applications of concept lattices for data
mining, especially for generating association rules [3].
One of the main characteristics of this application area is
the large amount of structured data to be analysed.
Another important application field is the area of
production planning where the concept lattices are used
to partition the products into disjoint groups during the
optimisation of the production cost [11]. As the cost of
building a concept lattice is a super-linear function of the
corresponding context size, the efficient computing of
concept lattices is a very important issue [12].

The building of a concept lattice consists of two,
usually distinct phases. In the first phase, the set of
concepts is generated. The lattice is built in the second
phase from the generated set. We can find proposals in the
literature for a combined optimisation of both phases and
there are proposals addressing only one of the two phases.

Based on the analysis of these optimisation methods,
the costs for the two phases are about the same order of
magnitude and the common asymptotic cost depends in
generally on three parameters: the number of objects, the
number of attributes and the number of concepts. In the
literature, there are two main variants for the concept set
building algorithms. The methods of the first group work
in batch mode, assuming that every element of the context
table is already present before starting the concept lattice
building. The main representative of this group is the
Ganter’s next closure method [1]. The other group of
proposals uses an incremental lattice building method. In
this case, the concept set is immediately updated when the

context is extended with a new object. The method of
Godin belongs to this group [2].

II. FORMAL CONCEPT ANALYSIS
The theory of concept lattice is based on the results of

Formal Concept Analysis. A brief overview will be given
in this section, a detailed description can be found among
others in [1].

A K context is a triple K (G, M, I) where G and M are
sets and I is a relation between G and M. The G is called
the set of objects and M is the set of attributes. The cross
table T of a context K (G, M, I) is the matrix form
description of the relation I:





=
otherwise

Iagif
t ji
ij 0

1
 (𝟏)

where 𝑔𝑖 ∈ 𝐺, 𝑎𝑗 ∈ 𝑀.
For ∀ A ⊆ G, a derivation operator is defined as:

 A' = { a ∈ M | g I a for ∀ g ∈A } (1)

and for ∀ B ⊆M

 B' = { g ∈ G | g I a for ∀ a ∈B } (2)

The pair C(A,B) is a concept of the K context if

AB
BA
MB
GA

=
=
⊆
⊆

'
'

 (3)

hold true. In this case, A is called the extent and B is the
intent of the C concept. It can be shown that for ∀ A

i

 (∪

⊆ G,

i
A

i
)' = ∩

i
A'

i

and similarly ∀ B

 (4)

i

 (∪

 ⊆ M,

i
B

i
)' = ∩

i
B'

I

holds true.

 (5)

Considering the Φ set of all concepts for the K context,
an ordering relation can be introduced for the concept set
in the following way:

 C
1

≤ C
2

if A
1
⊆ A

2
 (6)

 J. Vásárhelyi et al. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 143-148 144
__

ISSN 1844 – 9689

where C
1

and C
2

are arbitrary concepts. It can be proved
that for every (C

1
,C

2

 (C

) pair of concepts, the following
rules are valid:

1
∧ C

2
∈ Φ)and (C

1
∨ C

2

Based on these features (Φ, ≤) is a lattice, called
concept lattice. According to the Basic Theorem of
concept lattices, (Φ, ≤) is a complete lattice, i.e. the
infinum and suprenum exist for every set of concepts.
The following rules hold true for every concept:

∈ Φ). (7)

 ∨ i (Ai, Bi) = (∩ iAi,(∪ iBi

 ∧
)'') (8)

i (Ai, Bi) = ((∪ iAi) '',∩iBi

where A'' denotes the closure of set A and it is defined as
the derivation of the derived set:

)

 A'' = (A')' (9)

The structure of a concept lattice is usually represented
with a Hasse diagram. The Hasse diagram is a special
directed graph. The nodes of the diagram are the concepts
and the edges correspond to the neighbourhood
relationship among the concepts. If C

1
, C

2

𝐶1 < 𝐶2
¬∃C3

∈ (Φ,≤) ∶ 𝐶1
< 𝐶3

< 𝐶2
 (10)

are concepts
for which

hold true then there is a directed edge between C
1
, C

2
in

the Hasse diagram. In this case, the C
1

and C
2

concepts
are called neighbour concepts. C

1
is a lower neighbour of

C
2

and C
2

is an upper neighbour of C
1

The Hasse diagram of a concept lattice can be used not
only to describe the concepts hidden in the underlying
data system, but it shows the generalization relation
among the objects, and it can be used for clustering
purposes, too. A good description on the related chapters
of the lattice theory can be found among others in [2].

.

III. BUILDING CONCEPT LATTICE
The process of concept lattice building can be

divided into two distinct phases. Initially, the set of
concepts is generated from the given context. In the
second phase, the lattice is built up from the generated set
of concepts. In the literature, there is a large set of
algorithms addressing only one of the two phases or
covering both steps. There are also methods that combine
these two phases into a single unit. Based on the analysis
of these methods in the literature, the cost for both steps
is about the same order of magnitude and the asymptotic
cost depends on mainly three parameters: the number of
objects, the number of attributes and the number of
concepts. The cost is always larger than the product of
these parameters.

Regarding the concept-set generation, there are two
main variants of the available algorithms. The methods of
the first group work in batch mode, assuming that every
element of the context table is already present. The most
widely known member of this group is the Ganter’s next
closure method. The other group of proposals is based on

incremental building mode. In this case, the concept set is
updated whenever the context is extended with a new
object. The Godin’s method belongs to this group.
Regarding the phase for lattice building, the proposed
approaches are based on the considerations that the lattice
should be built up in a top-down (or bottom-up) manner
because in this case only the elements of the upper (or
lower) neighbourhood are to be localised. The second
usual optimisation step is to reduce the set of lattice
elements tested during the localisation of the nearest
upper or lower neighbour elements.

The Godin’s method uses an incremental lattice
building approach. In this approach, if a new g object is
added to the original G object set, the existing lattice is
updated instead of generating the lattice from scratch. By
adding a new g object to the context, the concept set and
concept lattice are expanded usually by more than one
new concept. These new concepts should be generated
first and then they are inserted into the lattice. The key
point in generation of new concepts is the fact that any
new intent part should to be the result of intersecting the
attribute part of the new object with some intent part
already present in the lattice. Based on this feature, the
intent part of any concept is equal to the intersection of
the intent parts of the lower neighbour concepts. The
intent part of each concept has to be a subset of the M
attribute set, i.e. the generalized concepts are described
by the same attribute set as the basic objects have.

The basic algorithm for updating the concept lattice
can be summarized as follows:

1. cluster the concepts into buckets based on the
cardinality of the intent part

2. take each bucket in ascending cardinality order
3. for each H concept in the bucket do

if the intent part of H is not a subset of the intent
part of X then

new candidate pair is obtained by generating
a new intersection from H, X edges of the
new intersect result concept are generated

end if
end for

In the algorithm, X denotes the attribute part of the
new object to be inserted into the context. Applying this
kind of lattice generation method to objects having a
large number of attributes, some new important problems
will arise regarding the efficiency of the lattice building
algorithm, and on the other hand the easy usage and
interpretation of the resulting lattice. Considering
efficiency, it is known that the cost for the Godin’s
method is [4]:

 O(C2

where the following denotations are used:
NM) (11)

 C : number of concepts,
 N : number of objects,
 M : number of attributes.
According to the cost formula, the total cost value

increases linearly with the intent part size of the concepts.
The other drawback of large attribute sets is that the

large number of attributes may cause difficulties in
understanding and in the interpretation of the resulted
lattice. Humans prefer conciseness, i.e. a compact
description. Instead of large detailed descriptions, short

 J. Vásárhelyi et al. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 143-148 145
__

ISSN 1844 – 9689

compact expressions or concepts are used in the
communication.

In the paper of Hu [3], the concept set generation
process is coupled with the calculation of the support
value in order to discover association rules from the
concept lattice. The concept set building part is based on
the incremental method of Godin, thus resulting the same
asymptotic calculation cost estimation value:

 O(Nσ + CNDM). (12)

Another proposal is the Titanic algorithm, presented in
[14]. This method uses the support values of the different
attribute sets to determine the concept intents. It generates
the candidate generator sets in increasing order of the
size. A set is called a generator set if its closure is a
concept intent and it is minimal, i.e. it does not contain
any other generators for the same concept intent. The
method processes first the one-attribute-long candidates
and after then generates the candidate sets for the next
level.

The proposal of Lindig given in [13], is aimed at not
only the generation of the concept set but on the building
of the whole concept lattice. If we consider now only the
concept set generation part of the algorithm, this method
is related to the Ganter's method in many aspects. It
assumes a lexical ordering among the concepts and the
concepts are processed according to this ordering. The
method also generates for every new concept the set of
upper neighbour concepts to use this kind of information
during the insertion into the concept lattice.

The neighbours of a concept are generated using the
closure operation for the candidate neighbour attribute
sets. At every call of the neighbour routine the full
context table is scanned. The cost estimation of this
algorithm is

O(Ncσ + CN2 (13) M)

Thus the asymptotic complexity is the same as for the
Ganter's method.

One of the largest problems in hardware or software
implementation of concept lattices is the large number of
attributes. Most of the proposals in the literature cope
with this problem with elimination of the attributes with
low relevance value. Although, these algorithms can
reduce the number of attributes, providing better
efficiency and interpretation, the resulted lattice cannot
be treated as the most optimal one. According to our
considerations, this solution may yield in some kind of
information lost. This reasoning is based on two
elements. First, the information lost is caused by the fact
that the parent concepts will contain only some selected
attributes of the children and the selected attributes are
not always the best to describe the object. Second, during
the attribute reduction phase, the meaning of the
eliminated attributes will be lost, providing less
information in the intersected concept. Let’s take an
example to demonstrate the described effect.

Example 1. If there are four documents as objects with
the following attributes: D1(London, football),
D2(London, tennis), D3(Paris, tennis) and D4 (Berlin,
swimming) then the possible intersections of the attribute

parts will result in only two documents: D5(London) and
D6(tennis). The generated lattice is shown in Figure. 1.

In this result lattice, a great part of the information
about the document topics was lost, as there were only
few common attributes in the original documents.
According to the generated lattice, there are no common
in D3 and D4. On the other hand, a human could find
some common elements in these two documents, for
example, both refer to sports or to European capitals.

To improve the quality and usability of the resulting
lattice, a modified lattice and concept description form
was developed which is described in the next section in
details.

IV. EXTENDED ATTRIBUTE MANAGEMENT
It is assumed that there exists a lattice containing the

attributes from the objects. This lattice can be considered
as a thesaurus with the generalization relationship among
the attributes. Taking the documents as objects and the
words as attributes in our example, the attribute lattice
shows the specialization and generalization among the
different words [9]. In special cases, the lattice may be a
single hierarchy. It is also possible to take several disjoint
lattices as they can be merged into a new common lattice.
Using this attribute lattice, the usual lattice-building
operators are redefined to generate a more compact and
semantically more powerful concept lattice.

Figure 1. Concept Lattice Example

The proposed lattice construction algorithm is intended
for information systems with a relative narrow problem
area. In this case, an attribute lattice can be generated
within an acceptable time and effort. It is assumed that
the attribute lattice contains only those attributes that are
relevant for the problem area in question. In this case, the
size of the attribute lattice and the intent part of the
concepts will be manageable. According to this
assumption, the first phase of the document processing is
the attribute filtering when the attributes not present in
the attribute lattice are eliminated from the intent parts.

The attribute lattice is a subset of the M attribute set.
This lattice is denoted by the symbol Ω (M, ≤). The role
of the lattice is to represent the general – special
relationship among the attributes. The ordering relation of
the attribute lattice is defined in the following way:

For ∀ m
1
, m

2
∈ M and m

1
> m

2
 if m

1
is a

generalization of m
2
. Based upon the relationship in Ω

(M, ≤) a redefined subset or partial ordering relation is
introduced. This new relation is denoted by ≤* and it is
defined in the following way for ∀ m

1
, m

2

 m

∈ M:

1
≤* m

2
⇔ m

1
is an ancestor of m

2
 i.e. m1 is a generalization of m2 (m

in Ω (M, ≤),

1
≥ m

2
 based on the Ω (M, ≤) lattice.

) (14)

London tennis

London,
football

Paris
tennis

Berlin
swimming

London,
tennis

 J. Vásárhelyi et al. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 143-148 146
__

ISSN 1844 – 9689

Taking the words as attributes, for example, the word
animal is a generalization of the word dog, so animal ≤*
dog relation is met.

According to the lattice features, there exists a set of
nearest common upper neighbours for any arbitrary pairs
of attributes. This set is denoted by LCA(m

1
,m

2
). For the

attribute pair m
1
, m

2

 LCA(m
 we have:

1
,m

2
) = {m ∈ M | m ≤* m

1
and m ≤* m

2
 and ∄ m’: m’ ≤* m

(15)

1
and m’ ≤* m

2
The LCA denotes the least common ancestor of two

nodes in the lattice. The LCA set contains exactly the leaf
elements of the common ancestor lattice for m

and m ≤* m’}

1
and m

2

 𝐵1 ⊆ 𝐵2 ⇔ ∃𝑓:𝐵1 → 𝐵2 function (16)
⇒ 𝑥 ≤∗ 𝑓(𝑥) 𝑓𝑜𝑟 ∀𝑥 ∈ 𝐵1

.
Based on the partial ordering among the attributes, a
similar ≤* ordering can be defined among the attribute
sets. For ∀ 𝐵1,𝐵2 ⊆ 𝑀 the ⊆* ordering relation is given
as follows:

It is easy to see that the normal subset relation is a
special case of the ⊆* relation, i.e.:

 𝐵1 ⊆ 𝐵2 ⟹ 𝐵1 ⊆∗ 𝐵2 (17)

In this case the f: x → x mapping can be used to show
the correctness of the ⊆* relation.

Based on this kind of subset relation, a new intersection
operation can be defined. The definition of the new
operator is:

𝐵 = 𝐵1 ∩∗ 𝐵2 =∪ 𝐿𝐶𝐴(𝑚1,𝑚2|𝑚1 ∈ 𝐵1,𝑚2 ∈ 𝐵2) (18)

The intersection operator results in a set containing the
nearest common generalizations of the attributes in the
operand sets. If the parent node for every normal attribute
of the intent sets is the null attribute (which is equivalent
to the case when no attribute lattice is defined), the new
∩* intersection operator will yield in the same result as
the standard ∩ intersection operator. This is due to the
fact that in this case

𝐿𝐶𝐴(𝑚1,𝑚2) = 𝑚 𝑖𝑓 𝑚1 = 𝑚2 = 𝑚, ∅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (19)

Using this kind of subset and intersection operators
instead of the usual subset and intersection operators
during the concept set and concept lattice building
phases, the resulting lattice will be more compact, more
readable and manageable than the base concept lattice.

V. OPTIMIZATION OF LATTICE BUILDING
On important option for optimization of algorithms is

the parallelization of the execution. In the case of concept
lattice building, there are some computation phases which
are suitable for such parallelization. One of the first
parallelization methods is the ParGal [15] method. It
works on the fact that the computations of sub-nodes of a
given node are independent tasks. The major difficulty of
the algorithm is to manage the huge set of concepts
already generated. This set is to be tested for elimination
of duplicates if a new candidate concept is generated. In
the ParGal model, a separate process performs this time
consuming task.

In our approach, the focus is set for the first processing
phase, when all existing concepts generated already
should be intersected with the intent part of the new
object (Ao

). The intersection

io AA ∩ (20)

can be executed parallel for the different Ai

VI. HARDWARE CONSIDERATION

 intent sets as
they are totally independent from each other’s. These sets
are the new candidate intension concepts sets. In the next
step, the redundancy should be eliminated. This means
that the repeated values are removed from the result set.
In this phase, the intent part of the generated intersection
should be compared with the intent parts of the already
generated elements. To perform this step in parallel
execution a hash-table approach was implemented. In this
case, there is a corresponding hash table with a suitable
hash function. The parallel threads can insert the
generated elements into the table on an efficient way. The
elements with the same intent part are located within the
same bucket of the hash table. Thus, the checking of
collision can be executed locally, within a bucket. To
achieve a better load balancing, the different buckets can
be managed by different threads, thus the buckets can be
processed parallel. The process of intersection and
process for removal of duplicate values can be executed
in the same hash table.

The electronically stored information amount increased
exponentially since the introduction of the internet. To
find the corresponding information, which match the
search criteria are a question of time and the speed of the
software implemented search engines.

The massive amount of date handled by a document
clustering system requires high performance computing.
Microprocessors systems are inefficient in handling a
large amount of attributes, as they perform these
algorithms sequentially. The previously presented concept
lattice algorithm has several computation steps that can
run in parallel. Parallel algorithms are best suited for
implementation in hardware. Field Programmable Gate
Arrays (FPGAs) can implement these parallel algorithms.
However, there are some limitations in the
implementation of these algorithms, which result from the
hardware resources. Nevertheless, a concept lattice
implemented in hardware as a co-processing engine can
speed up document search even if FPGAs are working
with lower frequencies than processors. In addition,
FPGAs have the advantage against Application Specific
Integrated Circuits (ASIC) the possibility of dynamic
reconfiguration.

In the literature there is mentioned a high-speed
document clustering, which use reconfigurable hardware
[10]. In the mentioned paper Covington et all. relate about
a full hardware implementation of the K-means clustering
algorithm implemented in reconfigurable hardware that
clusters 512k documents rapidly. This implementation
uses four parallel cosine distance metrics to cluster
document vectors.

To demonstrate the operation of concept lattice in
hardware, the previously presented example (Figure 1.)
was synthesized in FPGA circuit using VHDL-specified
modules. These modules were then used to implement

 J. Vásárhelyi et al. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 143-148 147
__

ISSN 1844 – 9689

Figure 2. Simulation result of the attribute lattice

logic in a Spartan 3E FPGA. The hardware implemented
concept lattice is intended to be a co-processing element
of a NLM system.

The simulation result presented in Figure 2. shows the
final result of the node (London, sport) in the following
interpretation:

The value of output variable “city-sport” (telep_sport)
represents the concept node in a 16 bit representation.
The meaning of the bits is as follows:

bit 15: city is in Europe
bit 14: city is Capital
bit 13..8 city code
bit 7 there is sport in the city
bit 6..0 sport code
In this interpretation, we have a city in Europe, named

London, having sports tennis and football. The simulation
also contains another variable “sport-city” (sport_telep)
that shows the pairs of sports-city. In this interpretation
the lattice attribute sport (in this case golf) it is the
characteristic of the node Miskolc (Europe, not capital).

The attribute lattice simulated was implemented as
mentioned before in a Xilinx Spartan 3e FPGA. The
working frequency of the PCB board is 50MHz (the
simulation performed at the frequency 100MHz).

The device utilization summary presented in Table I.
shows that the parallel implementation of the algorithm
consumed relatively low resources. These resources are
mainly utilised for the implementation of the algorithm,
and only few resources for the database storage, since the

database contain only a few elements. Certainly in a real
implementation when the data amount and the number of
attributes is high then the hardware needed for
implementation is higher.

The presented and implemented example gives us the
confirmation that parallel algorithms can be used for
implementation of concept lattice.

The next step is to create a real concept with at
least ten thousand of data. The concept lattice co-
processing element will be implemented in National
Instruments RIO card.

The implementation should be characterized as
follows:

- has to be extensible if the number of lattice
elements increase;

- the construction of concept lattice start from
the universe (“11…11”) then each new
element which is different than the existing
element in the concepts (as result of cut
between the lattice vectors and the existing
elements of the concept);

TABLE I.

Device Utilization Summary

Logic Utilization Used Available Utilization

Number of 4 input LUTs 97 9,312 1%

Number of occupied Slices 53 4,656 1%

Number of Slices containing only related logic 53 53 100%

Number of Slices containing unrelated logic 0 53 0%

Total Number of 4 input LUTs 98 9,312 1%

Number used as logic 97
Number used as a route-thru 1

 J. Vásárhelyi et al. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 143-148 148
__

ISSN 1844 – 9689

Number of bonded IOBs 166 232 71%

IOB Flip Flops 22
Number of BUFGMUXs 1 24 4%

Average Fanout of Non-Clock Nets 1.73

- each new element introduced increase
dynamically the concept dimension.

- searching in the concept set should be
parallel as much as possible. If the amount of
data does not permit intensive parallel search,
then the data is loaded in sub sets of the
concept.

VII. CONCLUSIONS
The parallel implementation of concept lattice resulted

in speedup of algorithm execution. Development of a
concept lattice co-processor is possible.

The construction should allow some dynamic data
change, which is limited by the hardware resources.

ACKNOWLEDGMENT

REFERENCES

This Research was carried out as part of the TAMOP-
4.2.1.B-10/2/KONV-2010-0001 project with support by
the European Union, co-financed by the European Social
Fund.

[1] B. Ganter, “Finger Excersises in Fromal Concept Analysis”,
Dresden ICCL Summer School, June/July 2006
http://www.math.tu-resden.de/~ganter/psfiles/FingerExercises.pdf

[2] R. Godin, R. Missaoui, H. Alaoui, “Incremental Concept
Formation Algorithms Based On Galois (Concept) Lattices”,
Computational Intelligence, 11 DOI:10.1111/j.1467-
8640.1995.tb00031.x, 1995, pp. 246–267.

[3] K. Hu, Y. Lu, C. Shi: “Incremental concept formation algorithms
based on Galois lattices”, Proceedings of PAKDD99,
Beijing,1999, pp.109-113.

[4] Sheng-Yong Qiao, Shuo-Pin Wen, Cai-Yun Chen, Zhi-Guo Li, ”A
Fast Algorithm for Building Concept Lattice” IEEE International
Conference on Machine Learning and Cybernetics, ISBN: 0-7803-
8131-92003, DOI: 10.1109/ICMLC.2003.1264463, 2003, pp. 163-
167.

[5] http://en.wikipedia.org/wiki/Formal_concept_analysis
[6] http://www.upriss.org.uk/fca/
[7] Villerd J., Ranwez S., Crampes M., Carteret D., “Using Concept

Lattice for Visual Navigation Assistance in Large Databases:
Application to a Patent Database.” in CLA 2007,
http://www.informatik.uni-trier.de/~ley/db/conf/cla/cla2007.html

[8] Tsopzé N., Nguifo E. M., Tindo G.,Clann, “Concept Lattice-based
Artifcial Neural Network for supervised classification”, in CLA
2007, http://www.informatik.uni-
trier.de/~ley/db/conf/cla/cla2007.html

[9] L. Kovács “Concept Lattice Structure with Attribute Lattice”
[10] G. Adam Covington, Charles L.G. Comstock, Andrew A. Levine,

John W. Lockwood, Young H. Cho „High Speed Document
Clustering In Reconfigurable Hardware” Proceedings of IEEE
FPL 2006, 28-30 Aug. 2006, paper 189,2006, pp.1-7.

[11] S. Radeleczki, T. Tóth: Fogalomhálók alkalmazása a
csoporttechnológiában, OTKA kutatási jelentés, Miskolc,
Hungary, 2001

[12] L. Nourine., O. Raynaoud: A Fast Algorithm for Building Lattices,
Information Processing Letters, 71, 1999, p. 197-210

[13] C. Lindig: Fast Concept Analysis, Proceedings of the 8th

[14] G. Stumme., R. Taouil, Y. Bastide, N. Pasquier., L. Lakhal: Fast
Computation of Concept Lattices Using Data Mining Techniques,
7

 ICCS,
Darmstadt, 2000.

th

[15] P. Njiwoua, E.M. Nguifo: A Parallel Algorithm to build Concept
Lattice, Proc. Groningen Int. Inf. Techn Conf., 1997, pp. 103-107

 International Workshop on Knowlegde Representation meets
Databases (KRDB 2000), Berlin, 2000.

	I. Introduction
	II. Formal Concept Analysis
	III. Building Concept Lattice
	IV. Extended Attribute Management
	V. Optimization of lattice building
	VI. Hardware Consideration
	/
	VII. Conclusions
	Acknowledgment
	References

