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Abstract — Monitoring human activity may be useful for 
medical supervision and for prophylactic purposes. Mobile 
devices like intelligent phones or watches have multiple 
sensors and wireless communication capabilities which can 
be used for this purpose. This paper presents some 
integrated solutions for determining and continuous 
monitoring of a person’s state. Aspects taken into 
consideration are: activity detection and recognition based 
on acceleration sensors, wireless communication protocols 
for data acquisition, web monitoring, alerts generation and 
statistical processing of multiple sensorial data. As practical 
implementations two case studies are presented, one using 
an intelligent phone and another using a mixed signal 
processor integrated in a watch. 

I. INTRODUCTION 
Mobile and portable devices with increased intelligence 

open new possibilities in the field for medical supervision, 
assistance and prevention [1]. From medical point of 
view, continuous supervision of patients’ medical state is 
a qualitative improvement compared with more traditional 
sporadic tests and analysis procedures. Some rare critical 
states may be detected and early alerts can be generated in 
order to prevent more critical pathologic states. Such 
devices may also be used by persons who want to improve 
their lifestyle through attentive monitoring of their 
physical activity. Athletes are another category of persons 
who want to monitor their physical activity and 
physiological state during a long period of time.  

In order to continuously monitor and evaluate the state 
of a person someone may use different kind of intelligent 
mobile devices, from general purpose ones (e.g. mobile 
phones, PDAs) to those specialised for medical purposes 
(e.g. holters) [3],[4].  

Today’s integration and miniaturization technologies 
allow placing multiple sensors, sufficient computing 
resources and enough power on a portable device in order 
to be used for continuous activity and state monitoring 
purposes. Such devices may be integrated in the patients’ 
clothing making them easier to ware [5]. 

This paper investigates the issues and proposes some 
solutions to this problem. 

II. MONITORING WITH MOBILE DEVICES 
The monitoring problem can be divided into a number 

of issues: 
- acquiring data from different kind of sensors 
- pre-processing and filtering the acquired data 
- sensor data fusion and intelligent recognition 

and interpretation of incoming data 
- data storage and efficient data management 

- data communication 
- integration of mobile devices into a distributed 

supervision system 

A. Sensorial data acquisition 
In the case of sensorial data acquisition the question is 

what kinds of sensors are available and how to make the 
acquisition. Today, many intelligent phones are equipped 
with acceleration and localization sensors.  Acceleration 
measured on 3 directions is a useful information for 
determining the state or the kind of activity the holder is 
performing. Through acceleration we can determine the 
position of the body (standing or sitting) if the phone is 
kept in the same usual place (e.g. pocket) or the kind of 
activity the holder is performing (running, walking or 
staying still). Unfortunately, the acceleration information 
provided by the 3D sensors is very noisy and sometimes 
the useful information is hidden by other artefacts (e.g. 
trembling, vibrations, etc.). Figure 1 shows the 
acceleration signals measured on 3 directions (x, y and z) 
during a normal walk. It can be observed that the signals 
are quit different on the three directions and in some 
cases the noise level is comparable with the useful 
information (see the signal on x direction). 

 
An important factor that influences the quality of the 

acquired acceleration information is the sampling rate. A 
higher sampling rate increase the quality of the 
measurement, but overloads the devices with too much 
activity and consequently the power consumption. This 
aspect is critical in case of mobile devices because they 
have a limited energy source. Based on our experiments 
we established that a sampling rate in the interval 50-
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Figure 1. 3D Acceleration signal  
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100Hz is a good compromise between quality and energy 
preservation conditions. 

Another solution which may be used for long time 
monitoring periods is to have windows of higher 
sampling frequency separated by gaps when no sampling 
is done. For instance in every minute an acquisition 
window is started in order to establish the kind of activity 
the holder is performing. In this way the gaps between the 
measuring windows increase significantly the lifetime of 
the battery. The length of the window is established so 
that a given type of activity can be accurately determined. 
In case of activities like running or walking the window 
must cover at least 4-5 steps. This method of periodic 
measuring windows cannot be used in case we want to 
count the number of steps made by the user, the distance 
covered or the number of calories burned. Therefore we 
suggest to implement two regimes (selectable by the user) 
one for long term monitoring and one activated for some 
specific activities. 

The position information can be obtained from a GPS 
receiver (for outdoor activities) or by triangulating the 
transmission intensity of multiple wireless access points. 
The last one is less precise but it can give at least an 
information that the person is around a given access point 
(e.g. in the house). The acceleration and the localization 
data may be fused in order to obtain distance and speed 
information.   

Other sensors which may be used for medical state 
detection are: temperature sensor, ECG sensor(s), blood 
pressure sensor, hart rate sensor, oxygen concentration, 
etc. These are more specific for medical applications and 
therefore these kinds of sensors are not present in general 
purpose mobile phones. However, there are a number of 
wearable devices, such as the Chronos intelligent watch 
made by Texas Instruments [2], or dedicated medical 
devices that are equipped with such sensors. For instance 
the TI’s Chronos watch contains a temperature sensor, 
acceleration sensors, pressure sensor and it can get heart 
rate information from an external, attachable chest belt 
(BlueRobin) [6]. Other devices such as holters can 
measure one or multiple channels of ECG signals, blood 
pressure or oxygen concentration.  

We developed a number of prototypes of wearable 
devices for measuring ECG signal, blood pressure and 
temperature. These prototypes have three interchangeable 
modules: a sensor (data acquisition) module, a processing 
unit (based on a microcontroller) and a communication 
module (for wired or wireless transmission).  These 
prototypes allowed us to evaluate the possibilities but also 
the limitations of such devices. Using an on-the-shelf low-
power microcontroller (e.g. PIC16Fxx family from 
Microchip or MSP430FXXX from Texas Instruments), a 
wireless communication transceiver (e.g. CC2500, multi-
channel RF transceiver) and some analogue circuits (low 
power and low voltage operational amplifiers and sensors 
like AD620 [8]) we have build wearable devices at an 
affordable price. 

B. Pre-processing and filtering the acquired data 
In our case, the main challenges for pre-processing and 

filtering of sensorial data were twofold: the limited 
internal memory capacity and the real-time execution. For 

devices based on microcontrollers (like PIC16Fxx) the 
internal RAM memory is extremely small and it cannot 
preserve the amount of samples necessary for a complex 
and high quality signal filtering and processing. The 
filtering window and the sampling rate must be adapted to 
the maximum available RAM memory. For instance in 
our experiments with an ECG sensor attached to a 
microcontroller, the buffer had to cover a number of heart 
beats and the minimum sampling rate should not affect the 
shape of the QRS complex (the wave with the highest 
frequency components in the ECG signal).  

Another problem related with the use of 
microcontrollers as the computing element is the fact that 
they do not implement floating point operations. 
Implementing filters in integer arithmetic implies a 
number of artifices (e.g. magnification, virtual decimal 
point, etc.) in order to eliminate the errors caused by 
integer rounding.   

In case of intelligent phones the memory limitation is 
more relaxed but it is still a problem if the sampled data 
must be preserved longer time for future analysis (e.g. 
post processing of ECG signals).  

 
Filtering of sensorial data is used to eliminate inherent 

noise and to emphasize those components of the initial 
signal that are useful for later interpretation. In case of 
acceleration signals the collateral artefacts are multiple, 
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their frequency is comparable with the useful components 
and therefore the filtering process is not trivial.  

For detecting different kind of activities (running, 
sitting, walking) we had to use adapted averaging filters 
(low pass filters). For instance we had to eliminate the 
vibrations of the device in the users pocket caused by the 
user’s steps, preserving in the same time the envelope of 
the signal that describes the running or walking steps.  

Figure 2 shows the initial acceleration signal (a) the 
filtered one (b) and the FFT transform of the signal. The 
FFT transform was used to determine the stepping rate of 
a person as the most dominating frequency in the 
acceleration signal’s spectrum. 

In case of ECG signals, multiple filters eliminate the 
50Hz component, reduce the artefacts produced by the 
muscles and amplify the ECG’s complexes (QRS, P and T 
waves). 

The implementation of complex filters is limited by the 
available program memory and by the real-time 
restrictions. 

C. Sensor data fusion and intelligent recognition and 
interpretation of incoming data 

The goal of this step is to extract quality and aggregated 
information from the raw sensorial data [7]. The final 
result of this step is in most cases a human activity type or 
a medical state. In order to establish such a result we 
compare the patterns extracted from multiple sensor data 
with some patterns memorised in the learning process.  

For instance, in order to establish the type of activity a 
person is performing, we extract different characteristics 
from the acceleration data and compare them with those 
measured a-priory in the learning process. We are using a 
neural network trained for recognizing activities like 
walking, running, standing, sitting or other. The 
experiments showed that for a higher recognition rate the 
neural network must be trained for every user, because the 
acceleration profile differs between them. Taking into 
account the complexity of the neural network training 
process we decided to make the training on a PC-type 
computer and only the generated network parameters are 
loaded and used on an intelligent phone.  

For devices based on microcontrollers a simpler activity 
recognition method is used. We are using a fuzzy 
approach in which only some measured parameters are 
used (e.g. basic frequency, amplitude variation, 
dominance of one acceleration direction over the others 
etc.). 

In order to establish the medical state of a patient, data 
from multiple sensors may be used, such as temperature, 
acceleration, heart rate, blood pressure, etc. For instance a 
high heart rate is reasonable if a person is performing an 
activity like running, but it is detected as abnormal if a 
high heart rate or blood pressure cannot be correlated with 
an active state. In this area we have to make more research 
in order to develop tools that can decide between normal 
and critical states. 

D. Data storage and efficient data management 
Mobile devices have usually limited storage resources, 

fact that implies an intelligent storage management. In 
case of microcontroller-based mobile devices the data and 
program memory is extremely limited (hundreds of bytes 
for data memory and tens of Kbytes for program 

memory). This memory must be shared between program 
variables, data buffers and logged results. In most cases 
this is not a trivial task and the success of an 
implementation depends on the ability of the programmer 
to manage the limited memory space and optimize the 
code.  

For instance in the case of a device that has to handle 
ECG signals or a communication protocol the internal 
memory’s dimension is comparable with the minimal 
processing window for an ECG signal or with the 
minimum packet dimension of the protocol. The 
programmer must limit the sampling rate or reduce the 
time interval which is analysed. This may influence the 
quality of the results. The data which must be logged for a 
longer period of time may be written in the non-volatile 
(EEPROM or flash) memory of the microcontroller. If 
necessary, this memory can be extended with extra-
memory connected to the microcontroller on the serial bus 
(e.g.  I2C bus or SPI interface). 

In case of intelligent phones the internal memory 
limitation is not so significant. The data processing and 
inherently the quality of the results are similar with the 
solutions on a usual PC. The data logging process may be 
influenced by the limited external memory of these 
devices. For instance, if we want to preserve the data 
obtained from all the existing sensors at the operating 
sampling rate than after a few days the capacity of the 
external memory is exceeded. Therefore the programmer 
must implement a data logging policy that assures 
continuous data acquisition without space limitations. We 
implemented a data logging policy in which data sampled 
at high frequency is preserved just for a limited time 
interval close to the present time. The data acquired before 
this interval is preserved just as aggregated or statistical 
information. There is also a periodic deleting strategy 
established in accordance with the dimension of the 
external memory. 

E. Data communication 
The transmission of the acquired and processed data is 

an important issue for mobile devices. Data may be 
transferred in an off-line or on-line mode. In the first case 
the mobile device is performing as a data logger and the 
data is downloaded into a PC-like computer whenever the 
user decides to do so (usually when the memory is full or 
the data must be further analysed and stored). This 
solution does not assure continuous and remote 
monitoring of the person’s activity. Critical states or alerts 
cannot be transmitted in real-time. The data download 
may be performed on a wired (e.g. RS232 interface) or 
wireless connection (e.g. BlueTooth, ZigBee). 

The second approach (on-line) assures continuous 
transmission between the mobile device and a stationary 
computer or more generally a server. In order to facilitate 
the person’s movement it is recommended to use a 
wireless connection.  

Intelligent mobile phones can use the phone connection 
or an incorporated personal area network (e.g. BlueTooth) 
as support for the data transmission. The operation system 
of these phones offers powerful tools and services for 
communication on the Internet. The data can be 
transmitted periodically to a web server, making data 
available for distributed medical surveillance applications. 
The data may be downloaded into a stationary computer in 
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order to perform more complex evaluations, to display it 
with higher resolution or to store it for later evaluations. 
Another goal is to transmit alerts in case of critical state 
detection (e.g. the person has abnormal medical 
parameters, he/she is not moving for a long period of time 
or a fall is detected). 

In case of mobile devices developed with the help of a 
microcontroller the communication can be made on a 
serial channel (e.g. RS232, RS485) using a physical cable 
or a wireless transceiver (radio or infrared). Some 
microcontrollers have a network interface (e.g. CAN 
interface), which can be used as well. In order to release 
the microcontroller from the communication tasks, mainly 
when a more complex protocol is used, a communication 
controller may be added. For instance, the CC2500 
controller can be used for radio transmission of serial data.  

In our experiments with the Chronos watch we used the 
TI’s SimplicIT™ protocol in order to transmit 
continuously the data acquired with the watch’s sensors. 
This protocol can connect multiple mobile devices to an 
access point. The same radio interface of the watch was 
used to acquire the heart rate information measured with 
the BlueRobin’s chest belt device. 

F. Integration of mobile devices into a distributed 
medical supervision system 

A distributed medical supervision system is meant to 
provide remote assistance to a group of users (e.g. 
patients with chronic diseases or elderly people.) 
registered for such services.  

Mobile devices may be important components in such 
a system, offering real-time data about the state of the 
users. In case of critical states the system can alert 
supervision medical personnel, for a faster intervention. 
Doctors can follow constantly the evolution of patients 
and they can adapt the treatment adequately. Rare cases 
which occur just in some special conditions or moments 
of time may be detected and recorded for later analysis.  

 
 

 
Figure 3 shows a patient-centric distributed medical 

supervision system in which different kind of medical 
applications are interconnected in order to serve the 
medical needs of patients. Such a system requires a 

unified medical terms coding system (e.g. LOINC, 
SNOMED), standard data exchange formats and 
protocols (e.g. HL7).   

We implemented such a distributed medical 
supervisory system, called CardioNet [9], [10], using the 
following components: 

- mobile medical devices – dedicated mobile 
devices measuring one or two medical 
parameters (ECG, temperature, blood pressure) 

- mobile phones – as measuring device or as a 
“rooter” for transmitting the data on the Internet 

- stationary computer – as rooter for transmitting 
the data on the Internet  

- a web server application – used to store the 
acquired data and to supply the information for 
client applications 

- client applications for the medical staff – used 
by the medical personnel to supervise the 
patients   

- client application for users – used to manage and 
display their own medical records  

We developed a protocol used between a mobile device 
and its router station (computer or mobile phone) that 
simplifies the mapping of data packets containing 
measured data into HTTP messages. 

The CardioNet system provides access to medical 
services through the Internet in a similar way as home 
banking of e-commerce services. The system provides the 
means for patient and doctor interaction through web 
interfaces and services. The interaction may be off-line or 
on-line: it may or may not require the simultaneous 
presence of the patient and doctor during an Internet 
consultation. 

The CardioNet system can integrate mobile medical 
devices in order to monitor the state of the patients and 
continuously adjust the treatment. Initially the system 
was developed for patients with cardio-vascular diseases 
but with the extension of its medical ontology it can be 
used also for other groups of patients with chronic 
diseases that require continuous supervision 

III. CASE STUDIES 
In order to evaluate the possibilities of using mobile 

devices for human activity and state monitoring systems 
we developed two solutions: one based on the capabilities 
of an intelligent phone and one based on an intelligent 
watch, a system with much less computing  and energy 
resources.  

A. Activity supervision with intelligent mobile phones 
Based on the sensorial capabilities of an intelligent 

phone we developed an application that determines and 
record the activities performed by its user. We used the 
information supplied by acceleration sensors to identify 
the activity types and the communication channel of the 
phone to transmit the data to a server through the Internet. 

 
Figure 1 shows the shape of the signals generated by 

the acceleration sensors for different type of activities. It 
can be seen that besides the signal shapes that suggest 
walking or running there are many more artefacts that 

Figure 3. Patient-centric distributed medical 
supervision system 
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make the identification of stepping moments difficult. A 
simple threshold technique is not enough for determining 
the stepping moment. The amplitude of the variations 
depends on many factors. Therefore, we used low-pass 
filters to smooth the signal and eliminate artefacts caused 
by the devices vibration.  

 

 
 
 
In order to identify different types of activities, from the 

current filtered signal we extract a number of 
characteristics (amplitude, energy, entropy, correlation, 
covariance).  These characteristics are input nodes for a 
neural network a-priory trained for recognising activities 
like: running, walking, sitting, standing or other activity. 
In the training process we give examples of signals 
acquired during different kind of activities. Table 1 shows 
the experimental results regarding the recognition ratio. 

Table 1 
 Conditions Precision 
Activity 
detection 

activities recognised: running, 
walking, sitting, standing, other  

99% 

Step count for walking 98% 
for running with different speeds  97% 

Distance for walking 91% 
for running 70% 

 
For running and walking activities the application 

determines the frequency and the number of steps made 
by the user. For the frequency we are computing the FFT 
of the acceleration signal from the frequency spectrum we 
select the most dominant one. Using the steps cont and 
some physical characteristics of the user (e.g. height, 
weight) the application computes the distance covered by 
the user and the calories consumed during the process. 
Through the interface the user can see activities performed 
during a day or a week, percentage of different activity 
types and other statistical data. 

B. User’s state supervision with the TI’s Chronos 
intelligent watch 
In this second case study our goal was to minimise the 

device, which must be worn by the user. Therefore we 
used a small intelligent watch built by Texas Instruments 
around a CC430F6137 system-on-chip. This watch 
contains 3D acceleration sensors, temperature and 
pressure transducers. It has also a radio transceiver for 
wireless communication. The watch can communicate 

with a wearable device (a chest belt [6]) that can measure 
the heart rate.  

 
 
 
In its initial design the watch can work as a stand-

alone device or as a data logger. In the first mode it can 
display on its LSD the values measured by its sensors, 
including the altitude (which is aggregated from the 
pressure and temperature data). In the second mode the 
device logs the data measured periodically from the 
sensors and downloads the data when it is connected to a 
PC through an access point.  

Our goal was to transform the device into an on-line 
acquisition device. For this purpose we had to re-write 
the firmware of the watch in order to transmit 
continuously the acquired data. The process was 
aggravated by the fact that the watch was using the same 
radio interface for communication with the chest belt and 
with the access point, but with two different protocols: 
the SimplisIT and the BlueRobin. We had to implement a 
communication mode in which the two protocols are 
multiplexed in time. Through experiments we established 
the proper delays between moments when the two 
protocols are switching.   

 
 
 
In this case study most of the signal processing 

procedures had to be implemented on the host PC 
because the program memory of the mixed signal 
processor is very limited. The advantages of this solution 
are that the watch has a much smaller weight (compared 
with an intelligent phone), the battery’s lifetime is longer 
and it costs much less (50$). 

Figure 4 Statistical data displayed on the phone 

Figure 5. TI’s Chronos watch and BlueRobin’s chest belt 

Figure 6. Heart rate recorded on 3 days 
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IV. CONCLUSIONS 
This paper analysed the issues and possible solutions 

regarding the use of mobile devices as support for user’s 
activity and state supervision. Experiments shoved that 
intelligent phones with their sensorial and computing 
capabilities are good candidates for human activity 
interpretation and monitoring. Phones’ communication 
facilities allow easy transfer of data to a supervisory 
center. Many types of applications may be built upon the 
sensorial data, from personal time and diet assistant to 
remote patient supervision and alert generation. 

Smaller mobile devices, based on microcontrollers or 
mixed signal processors are a much cheaper, smaller and 
less power consuming solution. Sensorial and 
communication capabilities may be built upon these 
components that may be useful in a remote patient 
monitoring system. The limited processing and storing 
resources of these devices make the signal processing and 
recognition more difficult. Therefore the time and 
resource consuming complex signal interpretation 
procedures are shifted to stationary computers. 

Mobile devices can improve the quality of medical 
supervision through continuous data transmission and 
early alert generations. These devices assure mobility and 
higher safety to their users. 
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